$$ \newcommand\Tr{\mathrm{Tr}} \newcommand{\braket}[2]{\langle #1 \mid #2 \rangle} \newcommand\I{\mathbb{I}} \newcommand{\avg}[1]{\left< #1 \right>} \newcommand{\RD}{D} \newcommand{\ri}{\mathrm{i}} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\Sign}{Sign} \newcommand{\ii}{\mathrm i} \newcommand{\vv}{\mathrm v} \newcommand{\ff}{\mathrm f} \newcommand{\mm}{\mathrm m} \newcommand{\ee}{\mathrm e} \newcommand{\xx}{\mathrm x} \newcommand{\RR}{\mathrm R} \newcommand{\dd}{\mathrm d} \newcommand{\FF}{\mathrm F} \newcommand{\BB}{\mathrm B} \newcommand{\vph}{v_{\mathrm{ph}}} $$

Equation of Motion

The equation of motion for neutrino oscillations with self-interaction is 1 $$ \begin{equation} \ri \frac{\dd}{\dd t}\rho = [ \mathsf H,\rho], \label{chap:collective-sec:collective-eqn:equation-of-motion-general} \end{equation} $$ where the total derivative is $$ \begin{equation} \frac{\dd}{\dd t} = \partial_t + \mathbf v\cdot \boldsymbol{\nabla}, \end{equation} $$ and the Hamiltonian is composed of three different terms: $$ \begin{equation} \mathsf H = \mathsf H_{\mathrm v} +\mathsf H_{\nu\nu}. \end{equation} $$ In the above equation, the vacuum Hamiltonian is $$ \begin{align*} \mathsf H_\vv =& \begin{cases} -\frac{1}{2}\eta \omega_\vv \sigma_3 & \text{for neutrinos},\\ \frac{1}{2}\eta \omega_\vv \sigma_3 & \text{for antineutrinos}, \end{cases} \end{align*} $$ where $\eta = +1$ for the normal neutrino mass hierarchy and $-1$ for the inverted neutrino mass hierarchy, $\omega_\vv$ is the vacuum oscillation frequency of the neutrino or antineutrino. The neutrino self-interaction is more complicated and can be written as $$ \begin{equation} \mathsf H_{\nu\nu} = \sqrt{2}G_{\mathrm F} \int \frac{E'^2\dd E'}{8\pi^3} \dd\Gamma_{\mathbf v'} \left[ n(E',\mathbf v')\rho(E',\mathbf v') - \bar n(E',\mathbf v')\bar\rho(E',\mathbf v') \right] (1-\mathbf v \cdot \mathbf v'), \label{chap:collective-sec:collective-eqn:equation-of-motion-self-interaction} \end{equation} $$ where $\dd \Gamma_\nu$ is the differential solid angle, $n(E,\mathbf v)$ and $\rho(E, \mathbf v)$ are the number density and the flavor density matrix of the neutrino with energy $E$ and velocity $\mathbf v$, and $\bar n(E, \mathbf v)$ and $\bar \rho(E,\mathbf v)$ are the corresponding quantities of the antineutrino.

The presence of the neutrino self-interaction potential makes the equation of motion \eqref{chap:collective-sec:collective-eqn:equation-of-motion-general} nonlinear, and many interesting phenomena arise because of it. For example, a dense neutrino medium can experience synchronized oscillations during which all the neutrinos and antineutrinos oscillate with the same frequency 2 3 4 5. To see this, I will consider an isotropic and homogeneous neutrino gas and use the flavor isospin picture discussed in Sec. Flavor Isospin Formalism. The flavor isospin $\vec s$ of the neutrino is defined by $$ \begin{equation} \rho = \frac{1}{2} + \vec s \cdot \vec \sigma. \end{equation} $$ The equation of motion of the flavor isospin is $$ \begin{equation} \dot{\vec s} = \vec s \times \left(\vec H_\vv + \vec H_{\nu\nu} \right), \label{chap:collective-eqn:flavor-isospin-eom} \end{equation} $$ where $$ \begin{equation} \vec H_{\mathrm v} = \omega_{\mathrm v}\begin{pmatrix} -\sin 2\theta_{\mathrm v}\\ 0 \\ \cos 2\theta_{\mathrm v} \end{pmatrix} = \omega_\vv \vec B, \end{equation} $$ and $$ \begin{equation} \vec H_{\nu\nu} = \frac{\sqrt{2}G_{\mathrm F}}{2\pi^2} \int E'^2\dd E' n(E') \vec s(E'). \end{equation} $$ Here for simplicity I have assumed $n_{\mathrm e}=0$ and $\bar n=0$. When the neutrino density is very large, $\vec H_{\nu\nu}$ dominates over $\vec H_\vv$ in Eqn.~\eqref{chap:collective-eqn:flavor-isospin-eom}, and $\vec s$ precesses about $\vec H_{\nu\nu}$ rapidly. Meanwhile, the total flavor isospin $$ \begin{equation} \vec S = \int \dd E' f(E') \vec s(E') \end{equation} $$ precesses about $\vec H_\vv$ slowly with a mean oscillation frequency $\langle \omega_\vv \rangle$, where $$ \begin{equation} f(E) = \frac{ E^2 n(E) }{ \int E'^2 \dd E' n(E') } \end{equation} $$ is the energy distribution of the neutrino. To see this, one can multiply Eqn.~\eqref{chap:collective-eqn:flavor-isospin-eom} by $f(E)$ and integrate over $E$ which gives $$ \begin{align} \dot{\vec S} &= \int \dd E f(E)\vec s(E) \times \omega_\vv \vec B \\ &\to \int \dd E f(E) \left[ \frac{\vec s(E) \cdot \vec S}{ \lvert \vec S \rvert^2 } \vec S \right] \times \omega_\vv \vec B \\ &= \langle \omega_\vv \rangle \vec S \times \vec B, \end{align} $$ where $$ \begin{equation} \langle \omega_\vv \rangle = \int \dd E f(E) \left[ \frac{\vec s(E) \cdot \vec S}{ \lvert \vec S \rvert^2 } \right] \omega_\vv. \end{equation} $$ In the above equation I have replaced flavor isospin $\vec s$ with its projection along the direction of $\vec S$ because its precession about $\vec S$ is much faster than the precession of $\vec S$ about $\vec B$.

  1. G. Sigl, "General kinetic description of relativistic mixed neutrinos", Nuclear Physics B 406, 423-451 (1993) . ↩︎

  2. Sergio Pastor, "Physics of synchronized neutrino oscillations caused by self-interactions", Physical Review D 65, 053011 (2002) . ↩︎

  3. Steen Hannestad, "Self-induced conversion in dense neutrino gases: Pendulum in flavor space", Physical Review D 74, 1-21 (2006) . ↩︎

  4. Georg G. Raffelt, "Self-induced parametric resonance in collective neutrino oscillations", Physical Review D 78, 1-9 (2008) . ↩︎

  5. Huaiyu Duan, "Collective neutrino oscillations", Annual Review of Nuclear and Particle Science 60, 569-594 (2010) . ↩︎

Edit this page on GitHub